Facility Closure

CNMP Core Curriculum Section 2 — Farmstead Planning

Objectives

 Learn the appropriate methods to decommission a manure storage facility.

Required Materials

 NRCS Waste Facility Closure practice standard 360.

Final Application Logistics ...

Waste Storage System Closure Plan

Can be prepared in the CNMP planning process

Waste Facility Closure

Conservation Practice Standard – Code 360 Purpose

✓ Protect Surface and Groundwater

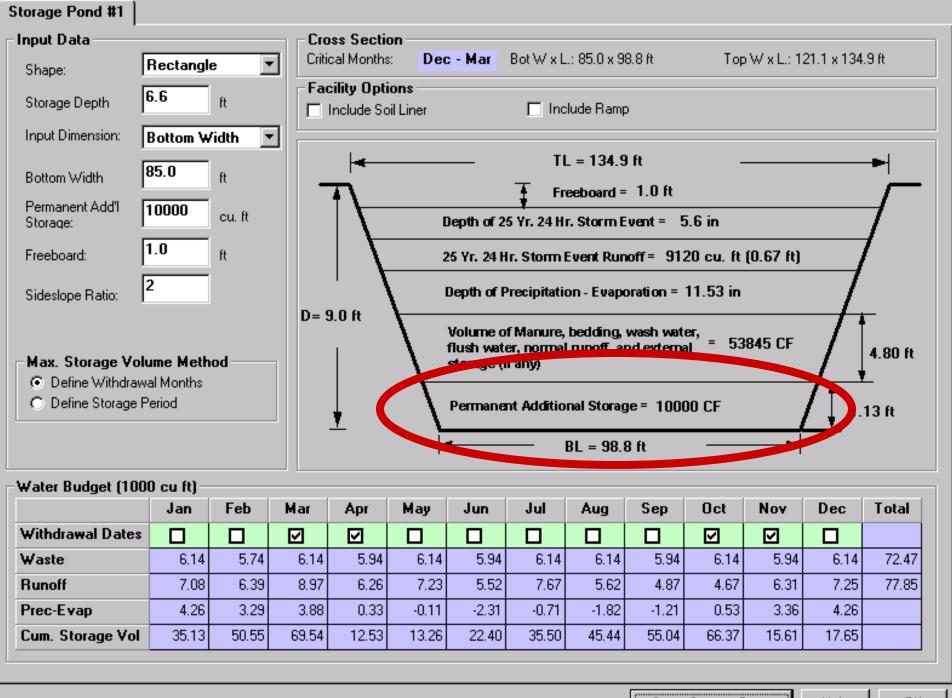
- ✓ Eliminate Safety Hazards
- ✓ Safeguard Public Health

All CNMPs should include a Closure Plan

- ✓ Apply remaining nutrients at agronomic rates
- Decommission Storage
 - Breach and backfill
 - Conversion to freshwater storage

Apply remaining nutrient at agronomic rates

For systems that do not store nutrients the closure plan application looks like the annual application plan


Example CNMP Farm Final Land Application

 Holding pond fully emptied every 6 months


 Final land application at closure will follow annual application plan

Additional 10,000 ft³ of sludge to be land applied at closure

In-Class Example

 Calculate the nutrients to be land applied in the 10,000 ft³ of sludge stored in the bottom of the Example Dairy CNMP holding pond.

In-Class Example

- Estimate Sludge Volume 10,000 ft³
- Estimate Sludge Nutrient Content
 - 21 lbs N / 1000 gallons sludge
 - 9 lbs P / 1000 gallons sludge
 - 13 lbs K / 1000 gallons sludge

Actual final land application rates should be based on analysis values

Estimate Sludge Nutrient Content

- Use AWMFH Chapter 4
- Estimate Dairy Sludge Nutrient Content

```
- N 21 lbs / 1000 gallons x 0.4 = PAN
- P 9 lbs / 1000 gallons x 2.29 = P_2O_5
- K 13 lbs / 1000 gallons x 1.2 = K_2O
```


Estimate Sludge Nutrient Content

- Using AWMFH Chapter Table 4-7:
- Estimate Dairy Sludge Nutrient Content

```
– PAN 8 lbs / 1000 gallons
```

- P₂O₅ 21 lbs / 1000 gallons
- K₂O
 16 lbs / 1000 gallons

Estimate Sludge Nutrients

• $10,000 \text{ ft}^3 = 74,800 \text{ gallons}$

Nutrients to apply

– PAN 600 lbs

 $-P_2O_5$ 1571 lbs

- K₂O 1197 lbs

Land Requirements

Target Crop (Corn Silage) nutrient needs:

150 lbs/acre PAN & 65 lbs/acre P₂O₅

PAN 600 lbs / 150 lbs PAN/acre = 4 acres

 P_2O_5 1571 lbs / 65 lbs P_2O_5 /acre = 24 acres

Apply remaining nutrient at agronomic rates

For systems that store substantial quantities of nutrients (i.e. anaerobic lagoons) the final application closure plan can be very difficult.

Learning Exercise

What if

The farm utilized an anaerobic lagoon sized to store sludge for 10 years?

Anaerobic Lagoon Example

- Estimate Sludge Volume
 - Chapter 10 AWMFH
 - ANSI/ASAE EP 403.3
 "Design of Anaerobic Lagoons for Animal Waste Management"

In-Class Learning Exercise

Estimate the land required at closure to land apply stored sludge from a 175 cow dairy (1300 # cows) using an anaerobic lagoon with a 10-year sludge storage time.

Assume a target crop requiring 150 lbs/acre PAN & 65 lbs/acre P₂O₅.

Estimate Sludge Volume

Using AWMFH Chapter 10

 $SV = 365 \times AU \times TS \times SAR \times T$

SV = Sludge Volume in ft₃

AU = Number of 1,000 # animal units

TS = TS lbs/AU/day

SAR = Sludge accumulation ratio in ft³ / lb TS

T = Sludge accumulation time in years

TS lbs / AU / day

Table 4–5 Dairy manure characterization—as excreted

(b) In units per day per 1,000 lb animal unit

Components	Units	Lactating cow milk production, lb/d		
		50	75	100
Weight	lb/d/1000 lb AU	96.51	107.67	118.94
Volume	ft³/d/1000 lb AU	1.56	1.74	1.92
Moisture	% wet basis	87.0	97.0	87.0
Total solids	lb/d/1000 lb AU	2.16	13.75	15.4
VS	lb/d/1000 lb AU	12.03	NA	NA
BOD	lb/d/1000 lb AU	2.08	NA	NA
N	lb/d/1000 lb AU	0.66	0.71	0.76
P	lb/d/1000 lb AU	0.11	0.12	0.14
K	lb/d/1000 lb AU	0.30	0.33	0.35

SAR = Sludge accumulation ratio in ft₃ / lb TS

Table 10–4 Sludge accumulation ratios (Barth 1985		
Animal type	SAR	
Poultry Layers Pullets	0.0295 0.0455	
Swine	0.0485	
Dairy cattle	0.0729	

Estimate Sludge Volume

Using AWMFH Chapter 10

 $SV = 365 \times AU \times TS \times SAR \times T$

 $SV = 365 \times 228 \times 14 \times 0.0729 \times 10$

 $SV = 849,343 \text{ ft}^3 = 6,353,086 \text{ gallons}$

Is this a realistic value?

Estimate Sludge Nutrients

• $849,343 \text{ ft}^3 = 6,353,086 \text{ gallons}$

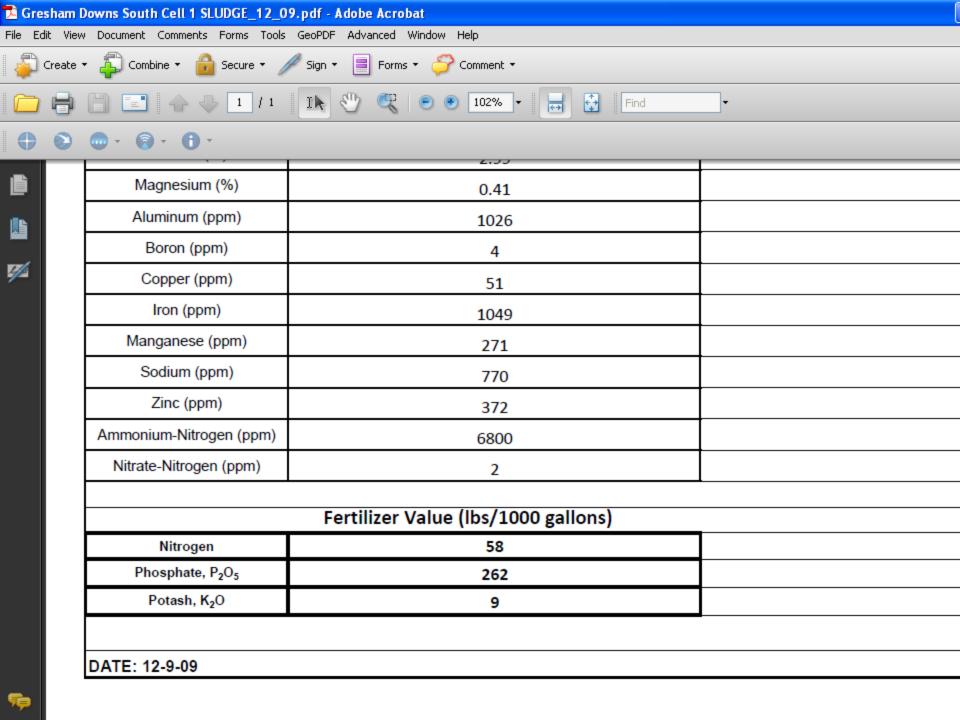
Nutrients to apply

– PAN 50,824 lbs

 $-P_2O_5$ 133,413 lbs

- K₂O 101,648 lbs

Land Requirements


PAN 50,824 lbs / 150 lbs PAN/acre = 339 acres

 P_2O_5 133,413 lbs / 65 lbs P_2O_5 /acre = 2053 acres

How do you clean the sludge out of a waste storage structure?

Agitate?

Geotubes for Sludge Removal (Filling)

Geotubes for Sludge Removal (Opening the Tube)

Geotubes for Sludge Removal

(Removal of Solids)

Decommission Storage

Breach and backfill

Conversion to freshwater storage

